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Proof that Combining Forced Collisions with
DXTRAN Produces an Unbiased Simulation
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Background: Forced-Collision Technique

I Goal: Sample more collisions in certain cells
I Technique: Split particles into collided and transmitted parts

I Collided particle undergoes a collision in the cell
I Transmitted particle streams through the cell

wt(p) = w0 exp(−`(x,xs(x, Ω̂))), (1)

wc(p) = w0 − wt(p) = w0

(
1− exp(−`(x,xs(x, Ω̂)))

)
, (2)

`(x,x′) ≡
∫ ‖x′−x‖

0
Σt

(
x + a

x′ − x

‖x′ − x‖

)
da (3)

I For this work, only one forced collision when entering a cell



Los Alamos National Laboratory

Slide 6 of 42

Diagram: Forced-Collision Technique
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Background: DXTRAN Technique

I Goal: Sample more random walks in a region
I Technique: Following source or collision, split particle into DXTRAN and

non-DXTRAN parts
I DXTRAN particle is created on the surface of the DXTRAN region
I Non-DXTRAN particle is killed if it tries to enter the DXTRAN region

wDX(p) = w0
f(x, Ω̂→ Ω̂′, E → E′)

fDX(x, Ω̂→ Ω̂′, E → E′)
exp(−`(x,xDX(x, Ω̂′))) (4)

I For this work, one spherical region without weight cutoff, DXC, or DD
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Diagram: DXTRAN Technique
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Background: Combined Techniques

I Goal: Sample more collisions in certain cells and more random walks in
another, possibly overlapping, region

I Technique: Implemented as before with two exceptions
I Collisions are forced before reaching the DXTRAN region
I Forcibly transmitted particle is killed if it intersects the DXTRAN region

I Matches what is done in the MCNP R© code
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Diagram: Combined Techniques
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Motivation for This Work MCNP Issue #53227

I Prompted by unexplained behavior
I Provide theoretical justification for:

I Forced-collision technique
I DXTRAN technique
I Both techniques combined

I Provide insight into what effect these techniques have on transport

Cell 2

Cell 1

Cell 0
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Approach to This Work

I Form the History Score Probability Density Functions (HSPDFs)
I Sum of all disjoint random-walk steps
I Written in integral form with operator notation

I Calculation the History Score Moment Equations (HSMEs)
I First score moment of HSPDFs

I Show that HSMEs with VR in play reduces to the analog HSME
I Convert HSMEs into characteristic coordinates and manipulate

I Throughout phase space is position, angle, energy, and weight

p ≡ (x, Ω̂, E, w)

I Non-multiplying media is assumed
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Analog Simulation: HSPDF

I HSPDF governs the probability of a history starting at p contributing ds
about s

ψ0(p, s)ds = T (p,p1)KA(p1,p2)

∫
fA(p1, sA)δ(s− sA)dsAds

+ T (p,p1)KE(p1,p3)

∫
fE(p1, sE)ψ0(p3, s− sE)dsEds

+ T (p,p4)S(p4,p5)

∫
fS(p4, sS)ψ0(p5, s− sS)dsSds

(5)

p

p5

p1

p2

p1

p

p5

p1

p3

p

p4

p5
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Analog Simulation: HSME

I HSME is the first score moment of the HSPDF

Ψ0(p) =

∫
sψ0(p, s)ds (6)

I The expected value is taken from the score PDF

s̄e(p) =

∫
sfe(p, s)ds (7)

I HSME governs the expected score from a history at p

Ψ0(p) = T (p,p1)KA(p1,p2)s̄A(p1)

+ T (p,p1)KE(p1,p3)(s̄E(p1) + Ψ0(p3))

+ T (p,p4)S(p4,p5)(s̄S(p4) + Ψ0(p5))

(8)
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Analog Simulation: Characteristic Coordinates
I Operators are defined in terms of characteristic coordinates
I Characteristic coordinate form of HSME

I Found from expanding operator definitions
I Less compact than operator form
I Allows direct comparison between HSMEs

Ψ0(p) =

∫ aS(x,Ω̂)

0
exp(−`(x,x + aΩ̂))

×

(
Σa(x + aΩ̂, E)s̄A(x + aΩ̂, Ω̂, E)

+

∫∫
Σs(x + aΩ̂, Ω̂→ Ω̂3, E → E3)

×
(
s̄E(x + aΩ̂, Ω̂, E) + Ψ0(x + aΩ̂, Ω̂3, E3, w)

))
dΩ3dE3da

+ exp(−`(x,x + aS(x, Ω̂)Ω̂))

×
(
s̄S(x + aS(x, Ω̂)Ω̂, Ω̂, E) + Ψ0(x + aS(x, Ω̂)Ω̂, Ω̂, E, w)

)

(9)

p

p4

p5

p1

p2

p3
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Forced Collisions: Governing Equation

I The forced-collision HSME has only two possible random-walk steps
I Each step will have both a collision and a transmission
I Collision is either absorptive or emissive
I If no collisions are forced, HSME looks like analog

ΨFC(p) = Bc(p,p1)KA(p1,p2)

× (s̄A(p1) + Bt(p,p4)S(p4,p5)(s̄S(p4) + ΨFC(p5)))

+ Bc(p,p1)KE(p1,p3)

×
(
s̄E(p1) + Ψ0

FC(p3) + Bt(p,p4)S(p4,p5)(s̄S(p4) + ΨFC(p5))
)
,

p ∈ {pFC}

(10)

p

p4

p5

p1

p2

p

p4

p5

p1

p3
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Forced Collisions: Equivalence to Analog Transport
I Can be rewritten as

ΨFC(p) = Bc(p,p1)KA(p1,p2)s̄A(p1)

+ Bc(p,p1)KE(p1,p3)
(
s̄E(p1) + Ψ0

FC(p3)
)

+ Bc(p,p1)(KA(p1,p2) +KE(p1,p3))

× Bt(p,p4)S(p4,p5)(s̄S(p4) + ΨFC(p5)), p ∈ {pFC}

(11)

I Sampling biased PDF with weight adjustment is equivalent to analog PDF

Bc(p,p1) + wc(p)→ T (p,p1)

Bt(p,p4) + wt(p)→ T (p,p4)

I Following both forced collisions means it’s going to happen

Bc(p,p1)(KA(p1,p2) +KE(p1,p3)) = 1

I Applying to Eq. 11, turns into Eq. 8

ΨFC(p), p ∈ {pFC} = Ψ0(p)
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DXTRAN: Governing Equation

I The DXTRAN HSME looks like the analog HSME with an extra branch

ΨDX(p) = TDX(p,p1)KA(p1,p2)s̄A(p1)

+ TDX(p,p1)KE(p1,p3)(s̄E(p1) + ΨDX(p3))

+ TDX(p,p4)S(p4,p5)(s̄S(p4) + ΨDX(p5))

+ TDX(p,p1)KE(p1,p3)BDX(p1,p6)ΨDX(p6)

(12)

I Differences between Eq. 12 and Eq. 8
I TDX kills particles attempting to enter the DXTRAN region
I BDX creates a DXTRAN particle following source/collision events



Los Alamos National Laboratory

Slide 19 of 42

DXTRAN: α/β Form

I Need to break HSME into two recursively interdependent equations
I α form governs transport only where DXTRAN particles are created
I β form governs transport elsewhere
I α/β form is exactly equivalent to previous form of HSMEs
I α/β notation is unique to this work

Ψα
DX(p) =

∫
f(x, Ω̂→ Ω̂1, E → E1)Ψ

β
DX(p1)δ(x1 − x)δ(w1 − w)dp1

+ BDX(p,p2)Ψ
β
DX(p2)

(13)

and
Ψβ
DX(p) = TDX(p,p1)KA(p1,p2)s̄A(p1)

+ TDX(p,p1)K′E(p1,p3)(s̄E(p1) + Ψα
DX(p3))

+ TDX(p,p4)S(p4,p5)
(
s̄S(p4) + Ψβ

DX(p5)
) (14)

I The analog HSME is also be cast into α/β form
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DXTRAN: α Form

Ψα
DX(p) =

∫
f(x, Ω̂→ Ω̂1, E → E1)Ψ

β
DX(p1)δ(x1 − x)δ(w1 − w)dp1

+ BDX(p,p2)Ψ
β
DX(p2)

I The α form consolidates DXTRAN and non-DXTRAN β transport

DXTRAN

p

DXTRAN

p

Image from Ref. [3]
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DXTRAN: Approach to Show Equivalence

I Temporarily assume technique is only applied once
I Once proven fair following emergence, assumption isn’t needed
I Allows subsequent Ψα

DX = Ψα
0

I Analyze all cases following emergence
I Phase space is divided by angle and DXTRAN sphere
I For all cases show technique is fair

I Technique is only unbiased following emergence
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DXTRAN: Equivalence to Analog

I DXTRAN particle with weight
adjustment is equivalent to analog

BDX(p,p′) + wDX(p)→ T (p,p′)

I X3: Won’t be truncated
I X1 +X4: Truncation is compensated

for by DXTRAN
I X2 +X5: Eventual truncation is

compensated for by DXTRAN
I For all cases, DXTRAN transport is

equivalent to analog following
emergence

Ψα
DX(p) = Ψα

0 (p)

X3

X5

X2 X4

X1

Cell 2

Cell 1

Cell 0
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Combined Techniques: Governing Equation
I The combined-technique HSME has two possible steps, one with

DXTRAN

ΨFC,DX(p) = Bc(p,p1)KA(p1,p2)

× (s̄A(p1) + Bt(p,p4)S(p4,p5)(s̄S(p4) + ΨFC,DX(p5)))

+ Bc(p,p1)KE(p1,p3)

×
(
s̄E(p1) + ΨDX

FC,DX(p3) + BDX(p1,p6)Ψ
DX
FC,DX(p6)

+ Bt(p,p4)S(p4,p5)(s̄S(p4) + ΨFC,DX(p5))), p ∈ {pFC}

(15)

Cell 2

Cell 1

Cell 0

Fo
rc

ed
A

bs
or

pt
iv

e
C

ol
lis

io
n

Cell 2

Cell 1

Cell 0

Fo
rc

ed
E

m
is

si
ve

C
ol

lis
io

n



Los Alamos National Laboratory

Slide 24 of 42

Combined Techniques: Equivalence to Analog Transport
I Can be rewritten as

ΨFC,DX(p) = Bc(p,p1)KA(p1,p2)s̄A(p1)

+ Bc(p,p1)KE(p1,p3)
(
s̄E(p1) + ΨDX

FC,DX(p3)
)

+ Bc(p,p1)(KA(p1,p2) +KE(p1,p3))

× Bt(p,p4)S(p4,p5)(s̄S(p4) + ΨFC,DX(p5))

+ Bc(p,p1)KE(p1,p3)BDX(p1,p6)Ψ
DX
FC,DX(p6), p ∈ {pFC}

(16)

I Looking at cases of streaming into either cell or DXTRAN surface shows

Bc(p,p1) + wc(p)→ TDX(p,p1)

Bt(p,p4) + wt(p)→ TDX(p,p4)

Bc(p,p1)(KA(p1,p2) +KE(p1,p3)) = 1

I Reducing forced-collision operators reveals
DXTRAN behavior

ΨFC,DX(p), p ∈ {pFC} = ΨDX(p)

Y2

Y1

Cell 2

Cell 1

Cell 0
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Proof of Fair Techniques Conclusions

I Instigating case was inconsistent but unbiased
I Forced-collision and DXTRAN techniques were

correctly combined
I Forced-collision was only applied to misidentified

DXTRAN particles
I Code change for consistency has been proposed

I All techniques are fair
I Detailed report available after LA-UR
I Assumptions underlying prior work [7] are not used

I DXTRAN can be played fairly on collision-by-collision basis
I Analog transport after emergence was assumed and later replaced
I Could also only apply technique at select emergence events
I Applies to sequenced forced-flight regions in the MCBEND code [8,

Sec. 2.4.2]

Cell 2

Cell 1

Cell 0



Los Alamos National Laboratory

Slide 26 of 42

Derivation of the Integro-Differential Form of the
Future Time Equation
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Background on Monte Carlo Computational Time

I Future time: Computational time required to simulate a particle at p
through a history

I Future Time Equation (FTE) is derived similarly to the HSME [9]
I Future Time PDF (FTPDF) is derived with time required as response of

interest
I First time moment of FTPDF gives the FTE
I Source terms are time required to process event (~ns)

Υ(p) = T (p,p1)KA(p1,p2)(τtrans + τcol,A)

+ T (p,p1)KE(p1,p3)(τtrans + τcol,E + Υ(p3))

+ T (p,p4)S(p4,p5)(τtrans + τsurf + Υ(p5))

(17)
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Motivation for Determining Expected Future Time

I Careful selection of VR parameters is used to optimize Monte Carlo
codes

I Consistent Adjoint Driven Importance Sampling (CADIS) [10]
I Determines VR parameters from adjoint function
I Accelerates calculations through population control
I Can lead to sub-optimal VR parameters due to oversplitting

I The solution of the FTE may be useful in addressing oversplitting
I Derivation of the integro-differential of the analog FTE is useful for:

I Assisting future researchers understand the method
I Being extended to include VR techniques
I Providing a form conducive to a familiar deterministic solution
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Future Time Equation Derivation Results

I Eq. 17 can be cast first into characteristic coordinates and then into an
integro-differential form

− Ω̂ · ∇Υ(p) + Σt(x, E)Υ(p) =∫∫
Σs(x, Ω̂→ Ω̂′, E → E ′)Υ(x, Ω̂′, E ′, w)dE ′dΩ′

+ Σa(x, E)(τtrans + τcol,A)

+ Σs(x, E)(τtrans + τcol,E) (18a)

where,

Υ(p) = τtrans+τsurf + Υoutside(p), x ∈ δΓ, Ω̂ · n > 0 (18b)

I Similar to the adjoint neutron transport equation with special source terms
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Future Time Equation Solution Results
I After source terms are calculated, Eq. 18 can be solved with discrete

ordinates methods [11]
I Material properties:

I Air Σt = 4.76× 10−4 cm−1, Σs = 0.920Σt
I Shield Σt = 4.65 cm−1, Σs = 0.063Σt
I Floor Σt = 0.304 cm−1, Σs = 0.975Σt

4.0 m
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Integration of the LLNL Pulsed Sphere
Benchmarks into V&V Framework
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LLNL Pulsed Sphere V&V Suite Introduction

Geometry of beryllium, concrete, and water pulsed spheres [12].

I Time spectra were measured from spheres of various materials pulsed
with 14-MeV neutrons during the Livermore Pulsed Sphere Program [12]

I Inputs replicating the Livermore Pulsed Sphere (LPS) experiments exist
[5, 6]

I New V&V framework is being developed to automatically run simulations,
compare results with experimental data, and produce documentation
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LLNL Pulsed Sphere V&V Suite Results

I Select LPS inputs and experimental results have been integrated into the
V&V framework
I Materials: Beryllium, carbon, concrete, lithium-6, iron, and water
I Models: A relatively simplistic legacy model and a more detailed model
I Nuclear Data: ENDF/B-VI.6, ENDF/B-VII.0, ENDF/B-VII.1, and

ENDF/B-VIII.0
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Conclusions
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Conclusions

I Variance-Reduction Fairness:
I Forced-collision, DXTRAN, and combined techniques are fair
I The MCNP code implements these techniques correctly

I Future Time Equation:
I PDF→ moment equation formalism is useful for different responses of

interest
I Integro-differential form of the FTE is very similar to the NTE

I LLNL Pulsed Spheres:
I Have been incorporated into the V&V suite
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Questions?
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Combined Techniques Visualization

I Particles entering forced-collision cell (middle) are collided before
reaching the DXTRAN sphere



Los Alamos National Laboratory

Slide 42 of 42

Abstract

To determine whether the combination of forced-collision and DXTRAN
variance-reduction (VR) techniques is unbiased, and to gain insight into the
operation of these techniques, proof that first-moment estimates from Monte Carlo
simulations employing both techniques are unbiased is developed. A general
background on the forced-collision and DXTRAN VR techniques and their
combination is given. Proof of an unbiased simulation is outlined by showing the
equivalence of the history score moment equations of simulations with these
techniques in use. A report with detailed proof of this equivalence is available upon
request. The derivation of the future time equation using a similar approach, as
well as a summary of the addition of the LLNL Pulsed Sphere experiments to the
MCNP verification and validation suite, is also briefly discussed.
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